C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Topology

Subject Code:5S	C01TOP1	Branch: M.Sc. (Mathema	Branch: M.Sc. (Mathematics)	
Semester: 1	Date:03/12/2018	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a.	Define: Lower limit topology.	1
	b.	Define: Homeomorphism.	1
	c.	Define: Projection map.	1
	d.	Give an example which shows that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.	2
	e.	Let <i>X</i> be a topological space. Let <i>A</i> , $B \subset X$. If $A \subset B$ then prove that $A' \subset B'$.	2
Q-2 a.	a.	Attempt all questions Let $X = R$ and $\tau = \begin{cases} U \mid \text{for } x \in U \text{ there exists } \epsilon > 0 \text{ such that} \\ (x - \epsilon, x + \epsilon) \subset U \end{cases}$ then prove that τ is topology on R .	(14) 5
	b.	Let A be a subset of topological space X and A' be the set of all limit points of A. Then prove that $\overline{A} = A \cup A'$.	5
c.	c.	Prove that projection maps are continuous. OR	4
Q-2 a. b. c.		Attempt all questions	(14)
	a.	Let <i>X</i> be any topological space and <i>B</i> be the basis for the set <i>X</i> . Let $\tau = \{U \mid \text{each } x \in U \exists B \in \mathcal{B} \exists x \in B \subset U \}$ then prove that τ is topology on <i>X</i> .	5
	b.	Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Let $X = X_1 \times X_2$. Define $\beta = \{U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2\}$. Prove that β is a basis for X .	5
	Prove that $(A \cap B)^0 = A^0 \cap B^0$. Is it true $(A \cup B)^0 = A^0 \cup B^0$? Justify your answer.	4	

Q-3		Attempt all questions	(14)
	a.	Let X, Y be topological spaces. $f: X \to Y$. Then prove that following are equivalent	6
		(1) f is continuous.	
		(2) for every subset A of X, then $f(\overline{A}) \subset \overline{f(A)}$	
		(3) For every closed set B of Y, $f^{-1}(B)$ is closed in X.	
	b.	State and prove that Pasting lemma.	4
	c.	State and prove sequence lemma.	4
		OR	
Q-3		Attempt all questions	(14)
	a.	Every compact subset of T_2 space is closed.	5
	b.	Every closed subset of compact space is compact.	5
	c.	Prove that continuous image of compact space is compact. SECTION – II	4
Q-4	a.	Attempt the Following questions Give an example of topological space which is not compact.	(07) 1
	b.	Define: Hausdorff Space.	1
	c.	Define: Disconnected space.	1
	d.	Is disconnectedness property ahereditary property?	1
	e.	Define: Locally compact space.	1
	f.	Is it true, "Product of Lindelof space is Lindelof"?	1
	g.	Define: Separable space.	1
Q-5	a.	Attempt all questions Let <i>X</i> be a topological space. Then prove that <i>X</i> is disconnected space if and only if there exists a non-empty proper subset of <i>X</i> which is both open and closed.	(14) 5
	b.	Define: Path connected. Prove that every path connected space is connected.	5
	c.	Prove that continuous image of connected space is connected.	4
Q-5		Attempt all Questions	(14)
	a.	State and prove Heine – Borel theorem.	7
	b.	If X is second countable topological space then prove that X is separable.	4
	c.	Prove that every compact space is locally compact.	3
Q-6	a.	Attempt all questions Define: Second countability axiom. Prove that subspace of second countable space is second countable. Is it true, "Every first countable space is second countable"? Justify your answer.	(14) 6
	b.	Define: Compact space. State and prove extreme value theorem.	6

	c.	State Urysohn's lemma.	2
		OR	
Q-6		Attempt all Questions	(14)
	a.	Prove that product of T_2 space is T_2 . Is it true for normal space? Justify your answer.	6
	b.	Define: Completely regular space. Let <i>X</i> be completely regular space and $A \subset X$ then prove that <i>A</i> is completely regular space.	6
	c.	State: Tychonoff theorem.	2

